The Colin de Verdière Number and Sphere Representations of a Graph
نویسندگان
چکیده
Colin de Verdi ere introduced an interesting linear algebraic invariant (G) of graphs. He proved that (G) 2 if and only if G is outerplanar, and (G) 3 if and only if G is planar. We prove that if the complement of a graph G on n nodes is outerplanar, then (G) n ? 4, and if it is planar, then (G) n ? 5. We give a full characterization of maximal planar graphs with (G) = n ? 5. In the opposite direction we show that if G does not have \twin" nodes, then (G) n ? 3 implies that the complement of G is outerplanar, and (G) n ? 4 implies that the complement of G is planar. Our main tools are a geometric formulation of the invariant, and constructing representations of graphs by spheres, related to the classical result of Koebe about representing planar graphs by touching disks. In particular we show that such sphere representations characterize outerplanar and planar graphs.
منابع مشابه
Steinitz Representations of Polyhedra and the Colin de Verdière Number
We show that the Steinitz representations of 3-connected planar graphs are correspond, in a well described way, to Colin de Verdière matrices of such graphs.
متن کاملSphere Representations, Stacked Polytopes, and the Colin de Verdière Number of a Graph
We prove that a k-tree can be viewed as a subgraph of a special type of (k + 1)-tree that corresponds to a stacked polytope and that these “stacked” (k + 1)-trees admit representations by orthogonal spheres in Rk+1. As a result, we derive lower bounds for Colin de Verdière’s μ of complements of partial k-trees and prove that μ(G) + μ(G) ≥ |G| − 2 for all chordal G. Yves Colin de Verdière’s grap...
متن کاملThe Colin de Verdière number and graphs of polytopes
The Colin de Verdière number μ(G) of a graph G is the maximum corank of a Colin de Verdière matrix for G (that is, of a Schrödinger operator on G with a single negative eigenvalue). In 2001, Lovász gave a construction that associated to every convex 3-polytope a Colin de Verdière matrix of corank 3 for its 1-skeleton. We generalize the Lovász construction to higher dimensions by interpreting it...
متن کاملThe Colin De Verdière Graph Parameter for Threshold Graphs
We consider Schrödinger operators on threshold graphs and give an explicit construction of a Colin de Verdière matrix for each connected threshold graph G of n vertices. We conclude the Colin de Verdière graph parameter μ(G) satisfies μ(G) ≥ n− i− 1, where i is the number of isolates in the graph building sequence. The proof is algorithmic in nature, constructing a particular Colin de Verdiére ...
متن کاملColin de Verdière number and graphs of polytopes
To every convex d-polytope with the dual graph G a matrix is associated. The matrix is shown to be a discrete Schrödinger operator on G with the second least eigenvalue of multiplicity d. This implies that the Colin de Verdière parameter of G is greater or equal d. The construction generalizes the one given by Lovász in the case d = 3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 17 شماره
صفحات -
تاریخ انتشار 1997